DYNAMIC INTERACTION OF SYSTEMS OF CRACKS
UNDER ANTIPLANE DEFORMATION CONDITIONS

P. A, Martynyuk and E. B. Polyak UDC 534.26

Problems of the dynamic effect on an isolated crack located in an infinite elastic body were solved in
[1-4]. It is interesting to obtain the solution of dynamic problems corresponding to a more complex geometry,
and to clarify the influence of the presence of adjacent cracks, systems of cracks, and the body boundaries.

INTRODUCTION

The mathematical description of an elastic body is substantially simpler for antiplane deformation than
for plane deformation but it accurately reflects the characteristic features of the phenomenon. In this case,
exact solutions of the limit problems are obtained successfully when the crack length is much greater than
either the spacing between them or the spacing to the half-space boundary. The method of solution used is
carried over to the case of plane aeformation without special difficulties,

1. SYSTEM OF PARALLEL CRACKS

An elastic isotropic space containing an infinite number of cracks of lengths 21 and 21, which are in
parallel and separated by the spacing 2h is considered. Under antiplane deformation conditions the single non-
zero component of the displacement vector is w=w(x,y,t}). Let us introduce the dimensionless variables

Ly by 2, 4, wY =L, by 2y, wlly ¥ =1l ¥ = toll,, (1.1)

where ¢ is the velocity of the transverse waves; u is the shear modulus. We henceforth omit the primes to
simplify the writing. Then the equation of motion of an isotropic elastic body and the nonzero components of
the stress tensor are

Pwlox® + wldy? — FPwldr? = 0; 1, = dwldy; 1., = Owldz. (1.2)

Let us assume that w=0 everywhere for t <0, while w=0 and W =0 for t=0 and the applied stresses 7,
are even functions of x, By virtue of symmetry of the problem relative to any line passing through one of the
cracks, we shall limit ourselves to the examination of an infinite strip ~h <y <+ h. The boundary conditions
for t > 0 have the form

T _{—p(-x,t),y:h,]l‘|<1,
Ol Fp@ )y =—h <L

1.3
w=0, y=h |z >1landy = —h, || > L. (1.3)

Performing a Laplace integral transform in t and a Fourier cosine transform in x, we obtain for the equa-
tion of motion (1.2)
Fwidyt — (s - pHw =0, w = w(s, ¥, p).
The general solution of this equation is
w(s, y, ) = A(s, p) sh ay -~ B(s, p) ch ay, @ = Vs* + p°.

Substituting it into (1.3), we obtain a system of equations to determine A(s, p) and B(s, p):

oo

2/m ( [A(s, p)shah + B (s, p)chah]cos(sz)ds =0, z>1; . (1.4)

0
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oo

2/n \A [— A(s, p)shahk 5 B(s, p)chah]cos(sz)ds =0, 2> L;
b
2/nja[A(s, p)chah + B(s, p)sh ah] cos (sz)ds — — P (z, p), t<z<t,
P .

2/nja[A(s.p)cha.h—B(s, p)shahjcos (sz)ds = F P(z,p),0<<z< L,
]

where

o

P(z, p) = \ plz, tye P dt.
b

It is known from the theory of cracks that the displacements at the nose of the crack should behave as
follows:
wz, b, p) ~ (1 — 23, z =1 — ¢;
wx, —h, p) ~ (L2 — 2, c =1 —¢e e 1.
Let us introduce the two functions ¢ (t, p) and ¥(t, p), defined with respect to t in the intervals {0, 1] and (0, L],
respectively, by the equalities

1 L
(" te(d, Yt le, p)

wiz b p) = | PEEEL A (e — b p) = | T gt (1.5)
x x

Using (1.5), the first two equations in (1.4) can be written as

'
A(s, p)shah + B(s, p)choah =z/2 Vg (t, pyJy(s)dt - adf2;
o

(1.6)
L
— A(s, p)shah+ B(s, pychah = /2 { 0y (1, p)J, (st)dt - n¥W/2.
)
We hence find A(s, p) and B(s, p):
Afs, p) = ald- 1O — Wisli-tah: Bs, p) = a4-1b - Wich-'ah, (1.7)

Integrating the third and fourth equations from (1.4) with respect to x between 0 and x, and using (1.6) and (1,7),
we obtain

8
o7

J

i Wsin(sa)ds -= — VY P (e p)dr;

" (1.8)

]

52; ®sin(sz)ds —

¥

DY

af Wsin(sz)ds = F \ P(z, p)dx,

]

E‘g ® sin (sz)ds —

o

P38 oy
T34 oo,y

T;

where F=cotheh +tanhoh; G=cothah—tanhgh. The first equation is valid for 0 <x =< 1, and the second, for 0 =x <L,

Let us reduce (1.8) to two Fredholm integral equations of the second kind. Let us show this by the ex-
ample of the first equation from (1.8). Let us introduce the function g(s, p) by means of the equation
ali(2s) =1 -~ g(s, p), g(s) ~ O(s?) as s— oo. (1.9)

Substituting it into the first equation from (1.8), we obtain an Abel integral equation:

x

tg (¢, p) o
'Svmdt = H(z), 0Lz,
0

x

(L, p)dt \%G J, (st) sin (sz) ds,

Sl I

x 1 @
H(x) = — XP(z,p)dz— j te(t, p)dt \ g(s. p)Jy(st)sin(sx)ds +
0 o 0

¢
H' (z)d
whose solution is ¢ (¢, p) == 2/n Vt;;——; Substituting H'(x) here and integrating with respect to x, we obtain
0
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1 L
9106 D)+ | @2(v, p) Ky (3, tydv — { Wy (3, p) Kx(n, ) = — V3, (1.10)
0 0
IR

We obtain the following completely analogously for the second equation from (1.8) for 0 =t=T1.:

Y (t, p) —}—K (t,p) K, (7, t dr—j.(pl(r p)Ki(t, tydt = = V%, (1.11)
0

where

1
91, P) @t p z, p) .
[wi(t,p)]':‘/t[ (t, p)][ Ev—_px~ ] ’
Ky(n, )= ‘Vﬁjaa/z-.ro (st) Ty (sv) ds; (1.12)
0

K (t,t)=Vu S‘ g(s, p)sJ,(st) J4(st)ds.
0

In the particular case L.=1, Egs. (1.10) and (1.11) reduce for identical signs in the right sides to

1
Lt )+ Scpm,p)Ks(r, v ——V7T, (1.13)
Ko(v, )=V S‘[octhah——s T, (st) T, (s7) ds,

and for different signs in the right sides, to

(6 P) + X(pl(r p) Ki(r ydv = — Vi, (1.14)
Ka(v, t) =Vt Y [ cth ah — 51, (st) T, (s7) ds.
These equations correspond to the problem of a central crack in a layer of thickness 2h, whose boundaries

are free [Tyz=0 (1.13)] and fastened [w=0 (1.14)],

The main characteristic of the problems of the theory of cracks is the coefficient of stress intensity K
at the nose of the crack for a singularity on the order of (Ax)'i/ 2 (=1, Ax «1), Let us examine the expres-
sion for 'ryz(x, +h, p), let us show that they have a singularity of the needed order, and let us find the coef-
ficients for this singularity:

Ty, (z, h, p) = 5‘ aF/2 . ®cos(sx)ds — \aG/Z ¥ cos (sz) ds,
b 0

Ty, (T, —h, p) = — s aF|2 .- ¥cos (sz)ds + \“aG/Z - M cos(sz)ds
‘ 0 b

Integrating by parts in (1.6), we obtain 1
@ =1/s-[o(1,p)J S(P (t, ) 1T (st) dt];
" L
¥ =1/s- [q;(L, pY LIy (sL) — [ (¢, p)tT, (st)dt].
The second members in the expréssions for 7y, evidently l:ave no singularities., Taking the nonintegral parts

in"the expressions for & and ¥ and taking account of (1.9), we write just the terms yielding the singularity:

Ty (@ o p) = [ @ (1, p) Ty (s) cos(sz)ds + ...,
0
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oo

Tys (2, — by p) = — (B (L, p) LIy (Ls)cos (sz)ds + ...
(1]

Using the known formula [5]
L ,
VeEa—Lz +V oL
the coefficients for the singularities at the heads of the cracks can be written down:

1, T, _K P (t, —_
Ty,(l,,-i—Ax,h,p)z—(P%/z_p) K:TZ Vl_A(L;) _ 1@1( p)V—(Ax) vz,

Il P L
WL+ Az, —h, p) YLD YT T L"’l‘

Ve Az~ VAzr ]/2

5 Jy(Ls)cos (sz)ds = —
0

(1.15)
Py (),

where

L
_ P (z, p) P(z, p)
Pl 2/ﬂ§ dx: PL—2/TC mﬂd

Equations (1.10)~(1.14) were considered numerically. The kernels of the equations K;(7, t) (i=2, 3, 4)
can be written in a form more convenient for machine calculations:

<t
™ tp
n(%) ()
ip L74
n(4) &%) <x
= V1 &2 [cthph YT + € - th ph YT = €] — & — 2L/(4E +1),
wy(8) =V T+E thph YT + & — & — 2L/(AE - 1),
08 = VT = Ecth ph VT T & — & — 2868 - 1),

ofE) ~ 0(E-%) as §— oo.

Here I,(x) and K,(x) are cylindrical functions of imaginary argument. It was assumed that p(x, t) =p, through-
out in the computations,

Ki(t, 1) = p* Vi 1/2 + [ 0i(8) 7, &) 7, Epr) dE!, (1.16)
0

A method to find the inverse Laplace transform numerically, which is elucidated in [6], was used to con-
struct the dependences K;(t) (i=1, 2) by means of (1.15).

As an illustration, results of 2 computation of (1.10)-(1.12) on an electronic computer and the subsequent
numerical inversion of the Laplace transform are represented in Fig. 1. The dashed curves 1, 2 show the
values of Ky )/ (poﬁ o and the continuous curves show Kz(t)/ (pof-l- o). The curves have been constructed for
L/1,=2, where curves 1 correspond to the ratio I,/h=1, and curves 2, to the ratio I ,/h=2. The upper curves
correspond to stresses of identical sign acting on the cracks and the lower curves, to stresses of opposite signs.
In this latter case, the screening effect of a long crack is especially graphic — its presence results in an abrupt
drop in the value of the stress- 1ntens1ty coefficient at the nose of a short crack, The solid lines in Fig. 2 ex-
hibit the time dependence K(t)/ (pg 0) for 1 ,/h=1 (curves 1) and I /h=2 (curves 2). The upper curves hence
correspond to free layer boundaries, i.e., the solution of (1.13), and the lower, to rigidly framed layer bound-
aries, i.e., the solution of (1.14).

The static solution obtained from (1.10)-(1.12) as a result of passing to the limit as p—~ 0, which corre-
sponds tot— «, is shown in Fig. 3. The solid lines show the dependence of the ratio K,/ (powﬁ_ o), on the quantity
Ki(powfl—o). Curves 1-5 correspond to the values I ,/h=1.0; 0.8; 0.6; 0.4; 0.2, respectively. The upper curves
correspond to stresses with the same sign acting on the cracks and the lower, to stresses of opposite signs,
The dependences of the stress-intensity coefficients K/ (pofl-o) of the static problem on the quantity h/1,, ob-
tained as a result of a numerical computation of (1,13) and (1.14) as p—~0, are illustrated in Fig. 4. The upper
curve corresponds to the condition Ty, =0 on the layer boundaries and the lower curve corresponds to the
boundary condition w=0, The solutions constructed agree with the exact solutions of the corresponding static
problems,

2. A CRACK PARALLEL TO THE HALF-SPACE BOUNDARY

An elastic isotropic half-space y=—h containing an isolated crack of length 2 and located at y=0, x| <1,
is considered. We assume that at t > 0 the stress Tyz = +p(x, t) acts, respectively, on the crack at the upper
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and lower edges of the slit. Let us divide the domain under consideration into two. The first is the infinite
strip —h <y <0. The quantities referring to it will have the subscript 1. The second domain, which has the

subscript 2, is the half-plane y > 0. Then the boundary conditions for t > 0 are the following:

We can take

wyy =0 for y = —h, 1 << o0; T, =Fp (z, t) for y=0, jz]<l;
wy —we =0 for y =0, o] >1: 14y, — Ty, =0, for" y = 0. |aj<Too.:

Ty, =0 for y= —h, |z < oo

2.1)

(2.2)
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in place of the first boundary condition. The general solutions of the equations of motion in the appropriate

domains are

) (55 ¥y P) = Ayls, p) shay - Buls, p) choay;
wey (8, ¥, p) = Ay(s, ple—=, :

Substituting these into the boundary conditions (2.1), we obtain the system of equations
5 B(s, p)cos (sz)ds =0, Jo >1,;
0

‘S’ B(s, p)2a/[1 + th ah]-cos (sx)ds =n/2-P(z, p), 2] < 1,
0 o

where 2B(s, p) = Ay(s, p)[l + th ahl.

Exactly as before, let us introduce the function ¢, p), defined in the interval {0, 1] with respect to t by

the equality
1

(2,0, P (z, 0, p) = | ZEEBar

Proceeding analogously to the above, we obtain a Fredholm integral equation of the second kind:
1 i
91(t, P)+ § 013, ) Ky (1, ) dv = — VT, 0< £ <M,
0
Ki(v, t) =V [ {201 4 thah] ™ — s} Ty (st) T, (st) ds.
0
Using the boundary condition (2.2), we obtain

1
o1(t, )+ [ 0a(v, D) Ky (v, ) dr = — VE 02 <1,
0

Ey(1, )=Vt [ (2a[1+ cthah] ™" — s} T, (st) J, (st) ds,
J ,

732
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where @4, p) is defined by (1.11). The stress-intensity coefficient for a singularity at the nose of the crack
is determined by the expression

K(p) = —Pyp:(1, PV L/2, (2.5)

where ¢4(1, p) is the solution of (2.3), (2.4). For convenience of a calculation on an elecfcronic computer,
Kj(r, t) (i=1, 2) can be taken in the form (1.16), where the values

@ (f) = 2VT F Bt +th po VT + B2 — & — 28/(48 + 1),
0y(§) = 211 + Bl + cth ph VT HE - — & — 28/(4E 1)
must be taken as wi(i).' '

The solid lines in Fig, 5 show the results of a numerical computation of the time dependence of the ratio
Kt)/ (pO«/-l' o by using the technique of finding the inverse Laplace transform numerically for p(x, 1) =pg. Curves
1 correspond to the ratio I h=1, and curves 2, to I, /h=2, The upper curves correspond to the boundary con-
dition Tyz =0 for y=—h andthe lower, to w=0 for y=—h, Static solutions obtained from (2.3) and (2.4) as
p—0 are represented in Fig. 6. The upper curve shows the change in the ratio K/(py/I, due to h/l, with the
condition Tyz =0 at y=—h, and the lower curve corresponds to the condition w=0 at y="h..

3. EXACT SOLUTIONS OF THE LIMIT PROBLEMS ({,>h)

Let us consider the problem of the dynamic loading of a semiinfinite crack located centrally in a layer
of thickness 2h, Let us perform the same transformation to dimensionless quantities as (1.1) by replacing
1, here by h. The crack is located at y=0 and x <0, Let us take 0<y <1 as the domain under consideration.
The boundary conditions of the problem are the following for t > 0:
Ty, = —Po, ¥ =0, £ <TO0;
wZOvy:O, 1’>0; ' (3.1)
Ty, =0, y =1, fzf < oo..

We can take
w=0,y=1, g < oo _ (3.2)
in place of the last condition in (3.1). In addition to the boundary conditions, the solution desired should satisfy

additional conditions on the edge of the slit:

172
Ty, ~x ,z—>0, 2>0;

v (3.3)
w~z , x>0, r<<0.
After executing a Laplace integral transform int and a Fourier transform in x, we obtain an ordinary
differential equation for (1.2):
dwldyr — (N + pPhw =0, w=wl, y, 1),
where A =0 +i71 is a complex variable, and its general solution is

wd,y,p) = A(A, p) sh ay +- B(A, p) ch ay, a = yA* + p*

Using the boundary conditions (3.1), we obtain a Wiener—Hopf functional equation for the unknown functions
T4 and w_:

—atha.w_(A, p) = 14 (&, p) - iPe/(Ap), P, = (2m)~4/2p,, (3.4)
where

)

=14k p) = (20) " [ 1y, (2, 0, p)o™dz;
0
0

w_ =w_ (M, p)=(2n)" 2 5‘ w(z, 0, p)e™ dz.

— 00

Equation (3.4) issatisfiedin the strip—y,<ImA <0 (y,>0), —=<ReA <+ of the complex A plane, where 7., p)
is a regular function in the domain ImA >~vy,, and w_(A, p) is a regular function in the domain ImA <0, Let us
represent the function K(A)= o tanha as the product KA)= K, (AK_(Q), where K, (A) is a regular function without
zeroes in the domain ImA >—vy,, and K_(A), in the domain ImA <0, Following [7], we obtain
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(=) = E_(), 6.5
Ko ()= (p— i) [T gt 202 it ()~

2=t VIt ot (e A/2) 2 — iha— (—1/2)

Using such a representation of K(A), we write (3.4) in the form
—w_ (A P) K—(A) — iPy/p-x—_ (&) =11 (A, p) KT' (V) 4 iPy/p-y1. (W=F (A), (3.6)
where
K W =2 KT () — K310)] +A"KTH0) =14 (V) + 31— (V).
The left side of the equation is a function which is analytic in the domain ImA <0, while the right side is analytic

in the domain ImA >—v,, The function F(A) can be determined on the whole A plane by analytic continuation,
where F(A) will be regular in the whole A plane.

Let us find the asymptotic of K;(A) as A~ and Im\ >0. To do this, let us compare the function K;(A) =
K3 M@ —ir) atA =it to the function

_T it i et~ 1
K(,(z)_’g1 P =1/} n-T(v/n) T (1/2 4 v/m).

It can be shown that lim K,(v)- K5 '(t) = 1. Using the asymptotic of the gamma function, we obtain that Ko(T) =.
T>o0

V7 as 7+, It hence follows that
' Ki(h) = VT for A = i1, T—> oo. (3.7)

By using the relationship connecting the asymptotic of a function with the asymptotic of its Fourier transform
[7], we obtain from the condition (3.3)

T (h, p) ~ A7 e A oo, ImA> —y,; (3.8)
) w_(A, p) ~ A-32 as A — oo, Imh<<O. .

The relationships (3.7) and (3.8) permit writing the following inequalities:

[—te—(hy PYR_(W)—iPy/p-3-(M)] < CIM-5 ImA< O, [ — oo;

e () KX )+ iPy/poye (W] <C ™Y ImA > — 3, [} - oo, C=const.
Then according to the generalized Liouville theorem, the function F(A) from (3.6) equals zero, and therefore
w_ (A, p) = — iPyfp-x— (M) K=" (M); T4 (s P) = — iPy/poys- (4) K (A).

Hence, by using (3.6) and (3.7), we obtain

Ty (A p) = — polp+ (T — KT ()73 for A = i1, T—> 00, (3.9)
Let us use the formulas connectingthe asymptotic of a function to its Fourier transform [7]:

. 1(z) ~ AzV, 20, 2 >0,
T (A) ~ AQm—12L(1 4 m)emtHnr2 j—1—n, } — oo,

As follows from (3.9), A=iT, n=—1/2; hence, A equals the stress-intensity coefficient K(p) for a singularity
on the order of (Ax)-1/2 (Ax « 1) at the nose of the crack

K((p) =po/p- -2 pcth p. (3.10)

If (3.2) is taken in (3.1) in place of the last boundary condition, then the solution of the problem is car-
ried out the same and the stress-intensity coefficient is hence

Ky(p) = poip-a—' Y pthp. (3.11)

The problem of dynamic loading of a semiinfinite crack parallel to the boundary of a half-space sepa-
rated by the distance h=1 is limiting when I,> h for the problem considered in Sec. 2. The domain—1< y<e
with a slit at y=0, x<0 is considered. As above, this domain is separated into iwo, the first with the sub-
seript (1) 0 >y >—1, and the second with the subscript (2) y >0, |x|<w« The boundary conditions are the fol-
lowing for t > 0: .

wy =0, y=—1, lf<<oo;
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T(tyyz = — Pgs y =0, J7<O,

Tz — TRz = o, y=0, Ix‘ < oo ; (3-12)
U:UJ(I)—W(Z):O, y':O, $>O
We can take
Tz =0, y = —14 [ff < oo (3.13)

in place of the first boundary condition, The Wiener— Hopf equation for the boundary-value problem (3.12) will
be

all + thel—=w_(3, p) = v+(A, p) + iPy/(Ap).
The solution is carried out as above; hence,

K() = al[l+th al-' = K (MK_(A), Ki(—) = K_(\),

Ks(W)=VDp—ir oM Fia/mn [~ +iw)] I VI zm—12—2— i (n — 1/2)7Y| et/
n=1

o) =—ir/7 {1-Cc+In[r/ (2p)]}; C =0,5772... is the Euler constant. The function ¢ () is defined in such a man-
ner as to assure the algebraic order of the behavior of K, (A) as A— <,

In this case we obtain the following expression for the stress-intensity coefficient:
K (p) = pop="*(2n)—/%e®/2 ¢ch=' p, (3.14)
and by using the boundary condition (3.13),
Ky(p) = pop—22(2)~"/2e?/2 sh=1/2 p, (3.15)

Using the relation between the asymptotic of a function and the asymptotic of its Laplace transform [7], we ob-
tain from (3.10), (3.11) and (3.14), (3.15) that K &) =pgt AT, Ky(t) =pAT, Ky(t) =pot V27, Ky (1) =py/m - V2t as t— .
Inverting the Laplace transforms in (3.10), (3.11) and (3.14), (3.15), we obtain :

Koty =(po/m)2V T U £ Ht—2)+ (1/2)H{t— %)+ (U2)H( — B)+...],
Ka(O)=(po/m)2V/T (1 + (1/2)H(t — 2) + (3/8)H(t — 4) % (5/16)H{t — 6) - .1,

where H(t —k) = {é: ;zi, and the lower signs in (3.16) correspond to K,(t) and K,(t). As is seen from the solu-

tions obtained for t=2, i.e., although a reflected wave has still not arrived from the body boundary, they agree
with the exact solution for a semiinfinite crack in an infinite elastic solid K{t) =py/7- 2Vt [1].

(3.16)

The exact solutions (3.16) obtained are shown by the dashed lines 3 in Figs. 2 and 5 for {,=2h. The solu-
tion for a semiinfinite crack in an elastic body is shown by the dashed lines 4 in Figs. 2 and 5. If the ratio
between the maximum value of the dynamic and static stress-intensity coefficients is 1,27 [4], then as follows
from a comparison between the curves corresponding to the dynamic loading with their appropriate curves
for the static problems, it is seen that this ratio depends on the geometry of the problem and can be substan-
tially larger.
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